Badanie opóźnionych protonów z rozpadu jąder ²⁶P i ²⁷S

Łukasz Janiak

Wydział Fizyki Uniwersytet Warszawski

16 listopada 2017

1) Opóźnione protony po rozpadzie β

3 Analiza danych

Opóźnione protony po rozpadzie β

Opóźnione protony po rozpadzie β

Opóźnione protony po rozpadzie β

				³¹ Cl ec β ⁺ 100% ecp 2.4%	³² Cl ec β ⁺ 100%	³³ Cl ec β ⁺ 100%	³⁴ Cl ec β ⁺ 100%	³⁵ Cl stable
[27 ec β ⁺ 100% β ⁺ p 2.3% β ⁺ 2p 1.1%	28 S ecβ ⁺ 100% ecp 20.7%	29 S ec β ⁺ 100% ec p 47%	$^{30}S_{ec \ \beta^+ 100\$}$	³¹ S ec β ⁺ 100% ec p 47%	³² S stable	³³ S stable	³⁴ S stable
	²⁶ Ρ ec β ⁺ 100% ec p 36.8% ec 2p 2.2%	²⁷ Ρ ^{ec β⁺100% β⁺p 0.07%}	²⁸ Ρ ec β ⁺ 100%	29 Ρ ec β ⁺ 100%	³⁰ Ρ ec β ⁺ 100%	³¹ P stable		
$ \begin{array}{c} 2^{22} \text{Si} \\ \approx \beta^{+} 100\$ \\ \approx c p 32.8\$ \\ \approx c p 71\$ \\ \approx c 2p 3.6\$ \end{array} \begin{array}{c} 2^{23} \text{Si} \\ \approx c \beta^{+} 100\$ \\ \beta^{+} p \\ 38\$ \\ \beta^{+} p \\ 38\$ \end{array} $	²⁵ Si ^{ec β⁺100% β⁺p 35%}	²⁶ Si ec β ⁺ 100%	²⁷ Si ec β ⁺ 100%	²⁸ Si stable	²⁹ Si stable	³⁰ Si stable		

Technika eksperymentalna

Schematyczny widok separatora Acculina

Technika eksperymentalna Optical Time Projection Chamber

Analiza danych Widmo identyfikacyjne

Analiza danych Efektywność rekonstrukcji energii

Rekonstrukcja energii

Łukasz Janiak

Rekonstrukcja energii

Łukasz Janiak

17 / 25

Widmo energetyczne

Łukasz Janiak

Badanie opóźnionych protonów z rozpadu jąder ²⁶P i ²⁷S

Widmo energetyczne

Łukasz Janiak

Widmo energetyczne

Widmo energetyczne E(theta)

Wyznaczyliśmy widmo energetyczne dla ²⁶P oraz ²⁷S.

Dla ²⁷S niskoenergetyczna część widma była obserwowana po raz pierwszy.

Rozwiązaliśmy zagadkę małego branchingu βp dla ²⁷S.

Przewaga OTPC.

Stosunek $\Gamma_{\gamma}/\Gamma_{p}$ zgodny z ostatnim wynikim Marganiec.

β -delayed proton emission from ²⁶P and ²⁷S

L. Janiak, ¹ N. Sokołowska, ^{1,2} A. A. Bezbakh, ³ A. A. Ciemny, ¹ H. Czyrkowski, ¹ R. Dąbrowski, ¹ W. Dominik, ¹
A. S. Fomichev, ³ M. S. Golovkov, ^{3,4} A. V. Gorshkov, ³ Z. Janas, ¹ G. Kamiński, ^{3,5} A. G. Knyazev, ^{3,6} S. A. Krupko, ³ M. Kuich, ¹
C. Mazzocchi, ¹ M. Mentel, ^{2,3} M. Pfützner, ¹ P. Pluciński, ^{2,3} M. Pomorski, ¹ R. S. Slepniev, ³ and B. Zalewski, ^{3,7}
¹Faculty of Physics, University of Warsaw, 02-093 Warszawa, Poland
²AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, 30-059 Kraków, Poland
³Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia
⁴Dubna State University, Dubna, Russia
⁵Institute of Nuclear Physics PN, 31-342 Kraków, Poland
⁶Department of Physics, Lund University, SE-22100 Lund, Sweden
⁷Heavy Ion Laboratory, University of Warsaw, 02-093 Warszawa, Poland